论文标题
CRC辅助信念传播列表解码极地代码
CRC-Aided Belief Propagation List Decoding of Polar Codes
论文作者
论文摘要
尽管最近基于排列因子图的概念,对极地代码的迭代解码最近取得了巨大进展,但与最先进的CRC辅助连续取消列表(CA-SCL)解码相比,它仍然具有不可忽略的性能降解。在这项工作中,我们表明,基于信念传播列表(BPL)算法的极地代码的迭代解码可以接近CA-SCL解码的误差性能,因此可以有效地用于解码标准化的5G极性代码。我们还旨在从外部CRC代码的错误校正功能中受益,而不仅仅是利用环状冗余检查(CRC)作为停止条件(即用于错误检测)。为此,我们开发了两种不同的软否决CRC解码算法:一种基于Bahl-Cocke-Jelinek-Raviv(BCJR)的方法和基于总产品算法(SPA)基于基于的方法。此外,分析了优化的排列因子图的选择,并显示出可显着降低解码复杂性。最后,我们基于CA-SCL解码下的最先进的5G极性代码为拟议的CRC辅助信念传播清单(CA-BPL)基准,从而展示了错误率的性能,不仅靠近CA-SCL,而且还接近接近最大可能性(ML)按有序统计统计数据估计的最大可能性(ML)。
Although iterative decoding of polar codes has recently made huge progress based on the idea of permuted factor graphs, it still suffers from a non-negligible performance degradation when compared to state-of-the-art CRC-aided successive cancellation list (CA-SCL) decoding. In this work, we show that iterative decoding of polar codes based on the belief propagation list (BPL) algorithm can approach the error-rate performance of CA-SCL decoding and, thus, can be efficiently used for decoding the standardized 5G polar codes. Rather than only utilizing the cyclic redundancy check (CRC) as a stopping condition (i.e., for error-detection), we also aim to benefit from the error-correction capabilities of the outer CRC code. For this, we develop two distinct soft-decision CRC decoding algorithms: a Bahl-Cocke-Jelinek-Raviv (BCJR)-based approach and a sum product algorithm (SPA)-based approach. Further, an optimized selection of permuted factor graphs is analyzed and shown to reduce the decoding complexity significantly. Finally, we benchmark the proposed CRC-aided belief propagation list (CA-BPL) to state-of-the-art 5G polar codes under CA-SCL decoding and, thereby, showcase an error-rate performance not just close to the CA-SCL but also close to the maximum likelihood (ML) bound as estimated by ordered statistic decoding (OSD).