论文标题
多项式根和相应的向后稳定根发现器的Min-Max元素向后误差
Min-Max Elementwise Backward Error for Roots of Polynomials and a Corresponding Backward Stable Root Finder
论文作者
论文摘要
引入了一种称为Min-Max Elementwise向后误差的新方法,用于标量多项式$ P(Z)$的大约根。与ElementWise相对向后误差相比,此新措施使$ P(Z)$的系数的相对扰动更大,这些系数不会参与整体的后退误差。通过相关的最大时间多种气质及其热带根来确定这些系数可以受到扰动的数量。算法设计用于计算$ p(z)$的根。它使用伴侣线性化$ c(z)= a-zb $ $ p(z)$,我们向其添加了额外的零领导系数,以及适当的两侧对角线缩放平衡$ a $ a $ a $ a $ a $ a $ a $ a $的分级时,尤其是$ b $的分级。然后,使用具有严格的QZ算法的实现,该算法具有严格的Infinity特征值的通缩标准,以获取与$ P(z)$的根的近似值。在假设QZ算法的这种实现时,当$ b $分级时表现出分级的向后错误,我们证明我们的新算法是Min-Max ElementWise向后稳定。几个数值实验显示了与MATLAB \ texttt {roots}函数相比,新算法的出色性能。将算法扩展到多项式特征值问题会导致一种新的多项式特征层,与许多数值测试所示,与其他现有多项式特征素相比,与其他现有多项式特征素相比表现出出色的数值行为。
A new measure called min-max elementwise backward error is introduced for approximate roots of scalar polynomials $p(z)$. Compared with the elementwise relative backward error, this new measure allows for larger relative perturbations on the coefficients of $p(z)$ that do not participate much in the overall backward error. By how much these coefficients can be perturbed is determined via an associated max-times polynomial and its tropical roots. An algorithm is designed for computing the roots of $p(z)$. It uses a companion linearization $C(z) = A-zB$ of $p(z)$ to which we added an extra zero leading coefficient, and an appropriate two-sided diagonal scaling that balances $A$ and makes $B$ graded in particular when there is variation in the magnitude of the coefficients of $p(z)$. An implementation of the QZ algorithm with a strict deflation criterion for eigenvalues at infinity is then used to obtain approximations to the roots of $p(z)$. Under the assumption that this implementation of the QZ algorithm exhibits a graded backward error when $B$ is graded, we prove that our new algorithm is min-max elementwise backward stable. Several numerical experiments show the superior performance of the new algorithm compared with the MATLAB \texttt{roots} function. Extending the algorithm to polynomial eigenvalue problems leads to a new polynomial eigensolver that exhibits excellent numerical behaviour compared with other existing polynomial eigensolvers, as illustrated by many numerical tests.