论文标题

提高生物医学研究中严格和可重复性的建议

Recommendations to enhance rigor and reproducibility in biomedical research

论文作者

Brito, Jaqueline J., Li, Jun, Moore, Jason H., Greene, Casey S., Nogoy, Nicole A., Garmire, Lana X., Mangul, Serghei

论文摘要

计算方法重塑了现代生物学的景观。尽管生物医学界越来越依赖计算工具,但确保开放数据,开放软件和可重复性的机制可由学术机构,资助者和出版商多样化。出版物可能会介绍基本材料或不可用的学术软件,例如源代码和文档。缺乏此类信息的出版物损害了同行评审在评估技术实力和科学贡献中的作用。学术软件包的不完整辅助信息可能会偏向或限制工具中生产的任何后续工作。我们在四个不同领域提供了八项建议,以提高计算生物学的可重复性,透明度和严格性 - 正是基于生命科学课程中应强调的主要价值。我们提高软件可用性,可用性和档案稳定性的建议旨在促进生物医学和生命科学研究中的可持续数据科学生态系统。

Computational methods have reshaped the landscape of modern biology. While the biomedical community is increasingly dependent on computational tools, the mechanisms ensuring open data, open software, and reproducibility are variably enforced by academic institutions, funders, and publishers. Publications may present academic software for which essential materials are or become unavailable, such as source code and documentation. Publications that lack such information compromise the role of peer review in evaluating technical strength and scientific contribution. Incomplete ancillary information for an academic software package may bias or limit any subsequent work produced with the tool. We provide eight recommendations across four different domains to improve reproducibility, transparency, and rigor in computational biology - precisely on the main values which should be emphasized in life science curricula. Our recommendations for improving software availability, usability, and archival stability aim to foster a sustainable data science ecosystem in biomedicine and life science research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源