论文标题

相对增长率和接触Banach-Mazur距离

Relative growth rate and contact Banach-Mazur distance

论文作者

Rosen, Daniel, Zhang, Jun

论文摘要

在本文中,我们在触点几何设置中定义了Banach-Mazur距离的非线性版本,称为Banach-Mazur距离,并用$ d _ {\ rm cbm} $表示。明确地,我们考虑以下两个设置,要么是在联系歧管$ w \ times s^1 $上,其中$ w $是liouville歧管,要么是封闭的liouville-fillable-fill-fill-follable tocter contact歧管$ m $。在这两种情况下,$ d _ {\ rm cbm} $的输入是不同的。在前一种情况下,输入为(联系)$ w \ times s^1 $的星形域,在后一种情况下,输入是$ m $的1形式的联系人。特别是,在前一种情况下定义的联系Banach-Mazur距离$ D _ {\ rm CBM} $是由Eliashberg和Polterovich最初定义和研究的概念,相对增长率的动机。此外,我们研究了$ d _ {\ rm cbm} $与触点几何和符号几何形状中各种数值测量的关系,例如,触点形状不变,(粗)符号banach-mazur距离。此外,我们以$ d _ {\ rm cbm} $而获得了几种大规模的几何属性。最后,我们提出了模块衍生类别类别(在某些拓扑空间)中的元素之间的定量比较。这是基于或骨的奇异支撑的几种重要特性。

In this paper, we define a non-linear version of Banach-Mazur distance in the contact geometry set-up, called contact Banach-Mazur distance and denoted by $d_{\rm CBM}$. Explicitly, we consider the following two set-ups, either on a contact manifold $W \times S^1$ where $W$ is a Liouville manifold, or a closed Liouville-fillable contact manifold $M$. The inputs of $d_{\rm CBM}$ are different in these two cases. In the former case the inputs are (contact) star-shaped domains of $W \times S^1$, and in the latter case the inputs are contact 1-forms of $M$. In particular, the contact Banach-Mazur distance $d_{\rm CBM}$ defined in the former case is motivated by the concept, relative growth rate, which was originally defined and studied by Eliashberg and Polterovich. In addition, we investigate the relations of $d_{\rm CBM}$ to various numerical measurements in contact geometry and symplectic geometry, for instance, contact shape invariant, (coarse) symplectic Banach-Mazur distance. Moreover, we obtain several large-scale geometric properties in terms of $d_{\rm CBM}$. Finally, we propose a quantitative comparison between elements in the derived categories of sheaves of modules (over certain topological spaces). This is based on several important properties of the singular support of sheaves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源