论文标题

课堂研究中视觉和音频数据的自动匿名

Automated Anonymisation of Visual and Audio Data in Classroom Studies

论文作者

Sümer, Ömer, Gerjets, Peter, Trautwein, Ulrich, Kasneci, Enkelejda

论文摘要

在教学过程中了解学生和老师的口头和非语言行为可能有助于推断有关教学质量的宝贵信息。在教育研究中,有许多研究旨在衡量学生的注意力集中在与学习相关的任务上:基于视听记录以及教师和学生行为的手册或自动评级。但是,学生数据非常敏感。因此,确保高标准的数据保护和隐私在当前实践中至关重要。例如,在教学管理研究的背景下,数据收集是在学生,父母,教师和学校管理的同意下进行的。然而,通常会有学生无法将数据用于研究目的。将这些学生从课堂上排除在外是对课堂组织的不自然入侵。一个可能的解决方案是请求许可以记录所有学生(包括不自愿参加研究的学生)的视听记录并匿名将其数据录制。然而,视听数据的手动匿名非常苛刻。在这项研究中,我们研究了人工智能方法自动匿名特定人的视觉和视听数据。

Understanding students' and teachers' verbal and non-verbal behaviours during instruction may help infer valuable information regarding the quality of teaching. In education research, there have been many studies that aim to measure students' attentional focus on learning-related tasks: Based on audio-visual recordings and manual or automated ratings of behaviours of teachers and students. Student data is, however, highly sensitive. Therefore, ensuring high standards of data protection and privacy has the utmost importance in current practices. For example, in the context of teaching management studies, data collection is carried out with the consent of pupils, parents, teachers and school administrations. Nevertheless, there may often be students whose data cannot be used for research purposes. Excluding these students from the classroom is an unnatural intrusion into the organisation of the classroom. A possible solution would be to request permission to record the audio-visual recordings of all students (including those who do not voluntarily participate in the study) and to anonymise their data. Yet, the manual anonymisation of audio-visual data is very demanding. In this study, we examine the use of artificial intelligence methods to automatically anonymise the visual and audio data of a particular person.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源