论文标题
正规化riemannian指标的曲率边界
Curvature bounds for regularized riemannian metrics
论文作者
论文摘要
我们通过烟雾调查了Riemannian指标的正则化。假设RICCI张量和较低的注射率半径结合的两侧边界,我们获得了截面曲率变化的均匀估计值。实际上,我们的结果适用于在$ w^{2,p} $ - 谐波半径上具有均匀绑定的任何度量。
We investigate regularization of riemannian metrics by mollification. Assuming both-sided bounds on the Ricci tensor and a lower injectivity radius bound we obtain a uniform estimate on the change of the sectional curvature. Actually, our result holds for any metric with a uniform bound on the $W^{2,p}$-harmonic radius.