论文标题
双曲线结的商类型
Cusp types of quotients of hyperbolic knot complements
论文作者
论文摘要
本文填写了可在双曲结互补的商中可能出现的可定向和不可定向的尖端类型的分类。特别是,$ s^2(2,4,4)$不能是屈曲结的任何Orbifold商的尖端横截面。此外,如果一个结的补充覆盖了$ s^2(2,3,6)$ cusp的Orbifold,它还涵盖了一个带有$ s^2(3,3,3)$ cusp的Orbifold。我们以一个讨论结尾,显示所有尖峰类型都在链接补充的商中出现。
This paper completes a classification of the types of orientable and non-orientable cusps that can arise in the quotients of hyperbolic knot complements. In particular, $S^2(2,4,4)$ cannot be the cusp cross-section of any orbifold quotient of a hyperbolic knot complement. Furthermore, if a knot complement covers an orbifold with a $S^2(2,3,6)$ cusp, it also covers an orbifold with a $S^2(3,3,3)$ cusp. We end with a discussion that shows all cusp types arise in the quotients of link complements.