论文标题
彼得·潘(Peter Pan)磁盘:年轻M星周围的长寿命积聚磁盘
Peter Pan Disks: Long-lived Accretion Disks Around Young M Stars
论文作者
论文摘要
WISEA J080822.18-644357.3是Carina Association的M明星,其极端红外过量和增生活动的年龄大于预期的积聚磁盘寿命。我们将J0808视为年龄$ \ gtrsim 20 $ Myr的M类积聚磁盘的原型示例,我们称其为``Peter Pan''磁盘,因为它们显然拒绝长大。我们提出了四个通过磁盘侦探公民科学项目确定的新的Peter Pan磁盘候选人,并加上\ textit {Gaia}天文学。我们发现WISEA J044634.16-262756.1和WISEA J094900.65-713803.1在考虑了2粒梁中附近的恒星后,都表现出显着的红外过量。 J0446系统具有$> 95 \%$的哥伦布会员资格。 J0949系统显示$> 95 \%$ Carina会员的可能性。我们介绍了所有四个对象的新的转基因谱光谱,显示所有四个星星上可能的积聚特征。我们提出了基于地面的和\ textit {tess} J0808和2MASS J0501-4337的光效率,包括J0808上的大型耀斑和上的浸入活动,以及J0501的强年周期性。我们发现PA $β$和Br $γ$排放表明在J0808的近红外光谱中正在进行积聚。使用观察到的这些系统的特征,我们讨论了导致$ \ gtrsim20 $ myr的积聚磁盘的机制,并发现这些对象最合理地代表了长期寿命的co-poor原始磁盘或``hybrid''磁盘,表现出debris-debris-debris-distrordial-diskisk strisk风险功能。问题仍然存在:为什么富含气体的磁盘持续了这么长时间?
WISEA J080822.18-644357.3, an M star in the Carina association, exhibits extreme infrared excess and accretion activity at an age greater than the expected accretion disk lifetime. We consider J0808 as the prototypical example of a class of M star accretion disks at ages $\gtrsim 20$ Myr, which we call ``Peter Pan'' disks, since they apparently refuse to grow up. We present four new Peter Pan disk candidates identified via the Disk Detective citizen science project, coupled with \textit{Gaia} astrometry. We find that WISEA J044634.16-262756.1 and WISEA J094900.65-713803.1 both exhibit significant infrared excess after accounting for nearby stars within the 2MASS beams. The J0446 system has $>95\%$ likelihood of Columba membership. The J0949 system shows $>95\%$ likelihood of Carina membership. We present new GMOS optical spectra of all four objects, showing possible accretion signatures on all four stars. We present ground-based and \textit{TESS} lightcurves of J0808 and 2MASS J0501-4337, including a large flare and aperiodic dipping activity on J0808, and strong periodicity on J0501. We find Pa$β$ and Br$γ$ emission indicating ongoing accretion in near-IR spectroscopy of J0808. Using observed characteristics of these systems, we discuss mechanisms that lead to accretion disks at ages $\gtrsim20$ Myr, and find that these objects most plausibly represent long-lived CO-poor primordial disks, or ``hybrid'' disks, exhibiting both debris- and primordial-disk features. The question remains: why have gas-rich disks persisted so long around these particular stars?