论文标题

贝叶斯分位数和预期优化

Bayesian Quantile and Expectile Optimisation

论文作者

Picheny, Victor, Moss, Henry, Torossian, Léonard, Durrande, Nicolas

论文摘要

贝叶斯优化(BO)被广泛用于优化随机黑匣子功能。尽管大多数BO方法都集中在优化条件期望上,但许多应用程序都需要规避风险的策略,并且需要考虑分配尾巴的替代标准。在本文中,我们提出了针对贝叶斯分位数和预期回归的新变异模型,这些模型非常适合异形的噪声设置。我们的模型分别由两个潜在的高斯过程组成,分别为条件分位数(或期望)和不对称可能性函数的比例参数组成。此外,我们提出了基于最大值熵搜索和汤普森采样的两种BO策略,这些策略是针对此类型号量身定制的,可以容纳大量点。与现有的BO方法进行规避风险优化相反,我们的策略可以直接针对分位数和预期进行优化,而无需复制观测值或假设噪声的参数形式。如实验部分所示,所提出的方法在异质的非高斯案例中显然优于最新技术。

Bayesian optimisation (BO) is widely used to optimise stochastic black box functions. While most BO approaches focus on optimising conditional expectations, many applications require risk-averse strategies and alternative criteria accounting for the distribution tails need to be considered. In this paper, we propose new variational models for Bayesian quantile and expectile regression that are well-suited for heteroscedastic noise settings. Our models consist of two latent Gaussian processes accounting respectively for the conditional quantile (or expectile) and the scale parameter of an asymmetric likelihood functions. Furthermore, we propose two BO strategies based on max-value entropy search and Thompson sampling, that are tailored to such models and that can accommodate large batches of points. Contrary to existing BO approaches for risk-averse optimisation, our strategies can directly optimise for the quantile and expectile, without requiring replicating observations or assuming a parametric form for the noise. As illustrated in the experimental section, the proposed approach clearly outperforms the state of the art in the heteroscedastic, non-Gaussian case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源