论文标题

变色龙:新闻推荐系统的深度学习元结构[博士学位。论文]

CHAMELEON: A Deep Learning Meta-Architecture for News Recommender Systems [Phd. Thesis]

论文作者

Moreira, Gabriel de Souza Pereira

论文摘要

推荐系统(RS)已成为一个流行的研究主题,自2016年以来,在这一领域越来越探索了深度学习方法和技术。新闻RS的目的是个性化用户体验,并帮助他们从大型且动态的搜索空间中发现相关文章。这项研究的主要贡献名为Chameleon,这是一个深度学习的元结构,旨在应对新闻建议的具体挑战。它由模块化参考体系结构组成,可以使用不同的神经构建块进行实例化。由于新闻领域中有关用户过去互动的信息很少,因此可以利用用户上下文来处理用户冷启动问题。文章的内容对于解决物品冷启动问题也很重要。此外,新闻领域的物品(文章)相关性的时间衰减非常加速。此外,外部破坏事件可能会在时间上吸引全球读者的关注,这一现象通常称为机器学习中的概念漂移。所有这些特征均通过使用复发性神经网络的基于上下文混合会话的推荐方法明确模型。这项研究解决的任务是基于会话的新闻推荐,即仅使用当前用户会话中可用的信息进行单击预测。提出了一种方法,用于对此类任务进行现实的时间离线评估,重播新闻门户网站上连续发表的用户点击和新文章。与其他传统和基于前提的建议建议算法相比,使用两个大型数据集进行的实验显示了变色龙对许多质量因素(例如准确性,项目覆盖率,新颖性和减少物品冷启动问题)的有效性。

Recommender Systems (RS) have became a popular research topic and, since 2016, Deep Learning methods and techniques have been increasingly explored in this area. News RS are aimed to personalize users experiences and help them discover relevant articles from a large and dynamic search space. The main contribution of this research was named CHAMELEON, a Deep Learning meta-architecture designed to tackle the specific challenges of news recommendation. It consists of a modular reference architecture which can be instantiated using different neural building blocks. As information about users' past interactions is scarce in the news domain, the user context can be leveraged to deal with the user cold-start problem. Articles' content is also important to tackle the item cold-start problem. Additionally, the temporal decay of items (articles) relevance is very accelerated in the news domain. Furthermore, external breaking events may temporally attract global readership attention, a phenomenon generally known as concept drift in machine learning. All those characteristics are explicitly modeled on this research by a contextual hybrid session-based recommendation approach using Recurrent Neural Networks. The task addressed by this research is session-based news recommendation, i.e., next-click prediction using only information available in the current user session. A method is proposed for a realistic temporal offline evaluation of such task, replaying the stream of user clicks and fresh articles being continuously published in a news portal. Experiments performed with two large datasets have shown the effectiveness of the CHAMELEON for news recommendation on many quality factors such as accuracy, item coverage, novelty, and reduced item cold-start problem, when compared to other traditional and state-of-the-art session-based recommendation algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源