论文标题
对抗性分组的分组观察
Adversarial Disentanglement with Grouped Observations
论文作者
论文摘要
我们考虑使用各种自动编码器的所有其他变化因素(样式)的数据(内容)相关属性的表示形式。最近的一些著作通过利用分组的观察来解决这个问题,其中假定内容属性在每个组中是常见的,而对样式因素没有任何监督信息。但是,在许多情况下,这些方法无法阻止模型使用样式变量也可以编码与内容相关的功能。这项工作通过一种方法来消除样式表示中的内容信息的方法来补充这些算法。为此,增加了培训目标,以最大程度地减少适当定义的相互信息术语。图像数据集的实验结果和比较表明,所得的方法可以有效地将内容和样式相关的属性分开,并将其推广到看不见的数据。
We consider the disentanglement of the representations of the relevant attributes of the data (content) from all other factors of variations (style) using Variational Autoencoders. Some recent works addressed this problem by utilizing grouped observations, where the content attributes are assumed to be common within each group, while there is no any supervised information on the style factors. In many cases, however, these methods fail to prevent the models from using the style variables to encode content related features as well. This work supplements these algorithms with a method that eliminates the content information in the style representations. For that purpose the training objective is augmented to minimize an appropriately defined mutual information term in an adversarial way. Experimental results and comparisons on image datasets show that the resulting method can efficiently separate the content and style related attributes and generalizes to unseen data.