论文标题

边缘保留CNN SAR伪装算法

Edge Preserving CNN SAR Despeckling Algorithm

论文作者

Vitale, Sergio, Ferraioli, Giampaolo, Pascazio, Vito

论文摘要

SAR Despeckling是地球观察的关键工具。 SAR图像的解释受到Speckle的损害,Speckle是一种与从照明场景到传感器的反向散射有关的乘法噪声。减少噪音是理解场景的关键任务。基于我们以前的解决方案KL-DNN的结果,在这项工作中,我们为培训卷积神经网络进行了恐惧的新成本函数。目的是控制边缘保存,并更好地过滤对KL-DNN非常具有挑战性的人造结构和城市地区。结果表明,在不均匀的领域中取得了很好的改善,可以使均匀的结果保持良好的效果。在论文中显示了模拟和真实数据的结果。

SAR despeckling is a key tool for Earth Observation. Interpretation of SAR images are impaired by speckle, a multiplicative noise related to interference of backscattering from the illuminated scene towards the sensor. Reducing the noise is a crucial task for the understanding of the scene. Based on the results of our previous solution KL-DNN, in this work we define a new cost function for training a convolutional neural network for despeckling. The aim is to control the edge preservation and to better filter manmade structures and urban areas that are very challenging for KL-DNN. The results show a very good improvement on the not homogeneous areas keeping the good results in the homogeneous ones. Result on both simulated and real data are shown in the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源