论文标题

掺杂的钛酸盐中的重型非脱位电子

Heavy non-degenerate electrons in doped strontium titanate

论文作者

Collignon, Clément, Bourges, Phillipe, Fauqué, Benoît, Behnia, Kamran

论文摘要

轻度掺杂的srtio $ _3 $的室温金属性令人困惑,因为机动性和有效质量的组合将暗示低于Mott Ioffe Regel(mir)限制(mir)限制(mir)限制(mir)限制(Mir)限制(MIR)限制(MIR)限制(MIR)限制,并且比Planckian Time($°τ_p= _p = \ hbar/kbar/kbar/kbt $)的分散时间更短。我们提出了一项针对电阻率,塞贝克系数和非弹性中子散射扩展到非常高温的研究,从而加深了难题。金属电阻率持续到900 K,并伴随着一个大的锯齿系数,其幅度(以及其温度和掺杂依赖性)表明载体随着温度升高而变得更重。将其与中子散射数据相结合,我们发现在500 K和900 K之间,BOHR半径和电子波长度相互匹配,并且是晶格参数的两倍。根据我们的结果,在100 K和500 K之间,金属性部分由温度引起的载体质量扩增驱动。我们将非分类电子的这种质量扩增与重型退化电子的案例相比。在500 K以上,平均无路径仍会随着变暖而继续缩小,尽管比原子间距离和电子的热波长短。后者饱和到晶格参数的两倍。可用的二极化准粒子理论并不能为我们的观察提供令人满意的解释。

Room-temperature metallicity of lightly doped SrTiO$_3$ is puzzling, because the combination of mobility and the effective mass would imply a mean-free-path (mfp) below the Mott Ioffe Regel (MIR) limit and a scattering time shorter than the Planckian time ($τ_P=\hbar/k_BT$). We present a study of electric resistivity, Seebeck coefficient and inelastic neutron scattering extended to very high temperatures, which deepens the puzzle. Metallic resistivity persists up to 900 K and is accompanied by a large Seebeck coefficient whose magnitude (as well as its temperature and doping dependence) indicates that carriers are becoming heavier with rising temperature. Combining this with neutron scattering data, we find that between 500 K and 900 K, the Bohr radius and the electron wave-length become comparable to each other and twice the lattice parameter. According to our results, between 100 K and 500 K, metallicity is partially driven by temperature-induced amplification of the carrier mass. We contrast this mass amplification of non-degenerate electrons with the better-known case of heavy degenerate electrons. Above 500 K, the mean-free-path continues to shrink with warming in spite of becoming shorter than both the interatomic distance and the thermal wavelength of the electrons. The latter saturates to twice the lattice parameter. Available theories of polaronic quasi-particles do not provide satisfactory explanation for our observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源