论文标题

Right-LCM Semigroup C* - 代数的功能和功能

Amenability and functoriality of right-LCM semigroup C*-algebras

论文作者

Laca, Marcelo, Li, Boyu

论文摘要

我们证明了右LCM MONOID的完整c*代数相对于在分解并保留正交性的单体夹杂物方面的全部C* - 代数,并使用它来表明,如果右LCM单型在NICA的意义上是可正常的,那么它的下monomoid也是如此。作为应用,我们通过证明只有右角是可以在NICA的意义上进行的,我们就可以完成ARTIN MONOID相对于NICA的合理性的分类,并且我们表明,右LCM Semigroups的图形产品的NICA不合适性是由因素遗传的。

We prove a functoriality result for the full C*-algebras of right-LCM monoids with respect to monoid inclusions that are closed under factorization and preserve orthogonality, and use this to show that if a right-LCM monoid is amenable in the sense of Nica, then so are its submonoids. As applications, we complete the classification of Artin monoids with respect to Nica amenability by showing that only the right-angled ones are amenable in the sense of Nica and we show that the Nica amenability of a graph product of right-LCM semigroups is inherited by the factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源