论文标题

卷积神经网络的应用来识别CO发射中的恒星反馈气泡

Application of Convolutional Neural Networks to Identify Stellar Feedback Bubbles in CO Emission

论文作者

Xu, Duo, Offner, Stella S. R., Gutermuth, Robert, Van Oort, Colin

论文摘要

我们采用深度学习方法CASI(卷积的外壳识别方法),并将其扩展到3D(CASI-3D),以识别分子线光谱中恒星反馈的签名,例如13CO。我们采用磁性融化动力学模拟,研究湍流分子云中恒星风的影响作为产生合成观测的输入。我们将3D辐射传输代码RADMC-3D应用于模拟云的模型13CO(J = 1-0)线发射。我们训练两种CASI-3D模型:ME1仅预测反馈的位置,而MF预测每个体素中反馈的质量分数。我们采用75%的合成观测作为训练集,并使用其余数据评估两个模型的准确性。我们证明,模型ME1以95%的精度识别模拟数据中的气泡,MF MF预测气泡质量在真实值的4%以内。我们使用先前在金牛座中在13CO中视觉识别的气泡来验证模型,并在最高置信气泡上表现出良好的表现。我们将两个模型应用于金牛座云的完整98 deg2 fcrao 13CO调查。 ME1和MF模型分别预测2894 m和302 m的反馈气体质量。当包括13CO数据立方体速度范围有限的能量缺失的校正因子时,MADE ME1预测反馈动能为4.0*1E46 ERG和1.5*1E47 ERGS,具有/不减去云速度梯度。 MF模型预测9.6*1E45 ERG和2.8*1E46 ERG的反馈动能,具有/不减少云速度梯度。 ME1模型预测气泡位置和特性与以前的视觉识别气泡一致。但是,MF模型表明,由于视线的混乱和背景和前景气体的污染,基于视觉识别计算的反馈属性被显着高估。

We adopt the deep learning method CASI (Convolutional Approach to Shell Identification) and extend it to 3D (CASI-3D) to identify signatures of stellar feedback in molecular line spectra, such as 13CO. We adopt magneto-hydrodynamics simulations that study the impact of stellar winds in a turbulent molecular cloud as an input to generate synthetic observations. We apply the 3D radiation transfer code radmc-3d to model 13CO (J=1-0) line emission from the simulated clouds. We train two CASI-3d models: ME1 predicts only the position of feedback, while MF predicts the fraction of the mass coming from feedback in each voxel. We adopt 75% of the synthetic observations as the training set and assess the accuracy of the two models with the remaining data. We demonstrate that model ME1 identifies bubbles in simulated data with 95% accuracy, and model MF predicts the bubble mass within 4% of the true value. We use bubbles previously visually identified in Taurus in 13CO to validate the models and show both perform well on the highest confidence bubbles. We apply our two models on the full 98 deg2 FCRAO 13CO survey of the Taurus cloud. Models ME1 and MF predict feedback gas mass of 2894 M and 302 M, respectively. When including a correction factor for missing energy due to the limited velocity range of the 13CO data cube, model ME1 predicts feedback kinetic energies of 4.0*1e46 ergs and 1.5*1e47 ergs with/without subtracting the cloud velocity gradient. Model MF predicts feedback kinetic energy of 9.6*1e45 ergs and 2.8*1e46 ergs with/without subtracting the cloud velocity gradient. Model ME1 predicts bubble locations and properties consistent with previous visually identified bubbles. However, model MF demonstrates that feedback properties computed based on visual identifications are significantly overestimated due to line of sight confusion and contamination from background and foreground gas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源