论文标题
Angular动量保护的新选择规则
New Selection Rules from Angular Momentum Conservation
论文作者
论文摘要
我们在旋转螺旋变量方面得出了$ m \ rightarrow n $散射幅度的广义部分波扩展。通过确定的角动量$ J $的扩展的基础幅度由Poincare Clebsch-Gordan系数组成,而$ j $限制了可以在树级上生成相应运算符的UV物理学。此外,我们获得了一系列选择规则,这些规则限制了有效运营商的异常维度矩阵,以及在循环级别上对运营商的有效运营商贡献的贡献。
We derive the generalized partial wave expansion for $M \rightarrow N$ scattering amplitude in terms of spinor helicity variables. The basis amplitudes of the expansion with definite angular momentum $j$ consist of the Poincare Clebsch-Gordan coefficients, while $j$ constrains the UV physics that could generate the corresponding operators at tree level. Moreover, we obtain a series of selection rules that restrict the anomalous dimension matrix of effective operators and the way how effective operators contribute to some $2 \rightarrow N$ amplitudes at the loop level.