论文标题
计数簇的量子干扰
Quantum Interference for Counting Clusters
论文作者
论文摘要
计算簇的数量时,当这些簇重叠时,在机器学习中是一个具有挑战性的问题。我们认为,当应用于非物理学建模时,使用路径积分技术制定的纯数学量子理论会导致非物理学量子理论本质上是统计的。我们表明,量子理论可以是一个更强大的统计理论,可以分离数据以计算重叠簇。该理论也从数据模拟中得到了证实。这项工作确定了量子理论如何有效地计算簇并希望激发该领域进一步应用此类技术。
Counting the number of clusters, when these clusters overlap significantly is a challenging problem in machine learning. We argue that a purely mathematical quantum theory, formulated using the path integral technique, when applied to non-physics modeling leads to non-physics quantum theories that are statistical in nature. We show that a quantum theory can be a more robust statistical theory to separate data to count overlapping clusters. The theory is also confirmed from data simulations.This works identify how quantum theory can be effective in counting clusters and hope to inspire the field to further apply such techniques.