论文标题
有限的简单谎言伪algebras III的不可还原模块。 H型的原始假alge骨
Irreducible modules over finite simple Lie pseudoalgebras III. Primitive pseudoalgebras of type H
论文作者
论文摘要
一个谎言保形代数是一个代数结构,它编码了保形场理论中手性场的算子产品扩展的奇异部分。谎言假载体是该结构的概括,对于不确定的多项式k [\ partial]的代数代替了基础场k上有限尺寸二维层代数d的通用代数u(d)。在我们的2001年论文[BDK]中分类了有限的(即在U(d)上有限生成的)。完整列表包括W,S,H和K型的原始谎言伪algebras,以及当前的谎言Algebras,或在它们上方或简单的有限二维级代数上。本文是我们关于简单谎言伪algebras的表示理论系列的第三篇论文。在第一篇论文中,我们表明,W或S型的原始谎言伪algebra上的任何有限的不可理用模块都是不可约合的张量模块,或者在伪DE RHAM复合体成员中的差异图像。在第二篇论文中,我们为K型的原始谎言伪algebras建立了类似的结果,其伪rham络合物被一定的还原取代,称为触点pseudo de rham复合物。 M. Rumin [Rum]发现了接触几何形状的这种减少。在本文中,我们表明,对于H型的原始谎言伪algebras,类似于K型的结果与接触式pseudo de rham复合物保持在一起,取而代之的是合适的复合物。但是,涉及更多的H型病例,因为歼灭代数不是相应的lie-cartan代数,而是在其他情况下,而是不可还原的中心扩展。当an灭代数的中心的作用微不足道时,这种复合物与伊斯特伍德[e]的作品有关,对合成染色的几何形状而言,我们称其为合并是同成立的pseudo de rham综合体。
A Lie conformal algebra is an algebraic structure that encodes the singular part of the operator product expansion of chiral fields in conformal field theory. A Lie pseudoalgebra is a generalization of this structure, for which the algebra of polynomials k[\partial] in the indeterminate is replaced by the universal enveloping algebra U(d) of a finite-dimensional Lie algebra d over the base field k. The finite (i.e., finitely generated over U(d)) simple Lie pseudoalgebras were classified in our 2001 paper [BDK]. The complete list consists of primitive Lie pseudoalgebras of type W, S, H, and K, and of current Lie pseudoalgebras over them or over simple finite-dimensional Lie algebras. The present paper is the third in our series on representation theory of simple Lie pseudoalgebras. In the first paper, we showed that any finite irreducible module over a primitive Lie pseudoalgebra of type W or S is either an irreducible tensor module or the image of the differential in a member of the pseudo de Rham complex. In the second paper, we established a similar result for primitive Lie pseudoalgebras of type K, with the pseudo de Rham complex replaced by a certain reduction, called the contact pseudo de Rham complex. This reduction in the context of contact geometry was discovered by M. Rumin [Rum]. In the present paper, we show that for primitive Lie pseudoalgebras of type H, a similar to type K result holds with the contact pseudo de Rham complex replaced by a suitable complex. However, the type H case in more involved, since the annihilation algebra is not the corresponding Lie-Cartan algebra, as in other cases, but an irreducible central extension. When the action of the center of the annihilation algebra is trivial, this complex is related to work by M. Eastwood [E] on conformally symplectic geometry, and we call it conformally symplectic pseudo de Rham complex.