论文标题
$ d $梅森混合作为反问题
$D$ meson mixing as an inverse problem
论文作者
论文摘要
我们通过考虑它们之间的分散关系来计算标准模型中$ d $梅森混合的参数$ x $和$ y $。虚拟符号的质量夸克的分散关系变成了一个反问题,通过该问题,低$ s $的均扰动输入$ x(s)$ x(s)$和$ y(s)$的混合参数可以从大$ $ s $中求解。结果表明,存在$ x $和$ y $的非平凡解决方案,其物理魅力量表的价值与CP支持和CP竞争案例中的数据一致。然后,我们预测可观察的$ | q/p | -1 \大约2 \ times 10^{ - 4} $和$ arg(q/p)\大约6 \ times 10^{ - 3} $度与$ d $ erson混合的系数比率,可以与更精确的未来测量相关。我们的工作代表了第一次成功的定量尝试,以解释标准模型中的$ d $ erson混合参数。
We calculate the parameters $x$ and $y$ for the $D$ meson mixing in the Standard Model by considering a dispersion relation between them. The dispersion relation for a fictitious charm quark of arbitrary mass squared $s$ is turned into an inverse problem, via which the mixing parameters at low $s$ are solved with the perturbative inputs $x(s)$ and $y(s)$ from large $s$. It is shown that nontrivial solutions for $x$ and $y$ exist, whose values around the physical charm scale agree with the data in both CP-conserving and CP-violating cases. We then predict the observables $|q/p|-1\approx 2\times 10^{-4}$ and $Arg(q/p)\approx 6\times 10^{-3}$ degrees associated with the coefficient ratio for the $D$ meson mixing, which can be confronted with more precise future measurements. Our work represents the first successful quantitative attempt to explain the $D$ meson mixing parameters in the Standard Model.