论文标题

迈向下一代视网膜神经假体:尖峰的视觉计算

Towards the Next Generation of Retinal Neuroprosthesis: Visual Computation with Spikes

论文作者

Yu, Zhaofei, Liu, Jian K., Jia, Shanshan, Zhang, Yichen, Zheng, Yajing, Tian, Yonghong, Huang, Tiejun

论文摘要

神经假体是一种精确的医学装置,目的是以闭环方式操纵大脑的神经元信号,并从环境中接收刺激并控制我们大脑/身体的某些部分。就视力而言,大脑可以以毫秒的间隔处理传入的信息。视网膜计算视觉场景,然后将其输出作为神经元尖峰发送到皮层以进行进一步计算。因此,视网膜神经假体感兴趣的神经元信号是峰值。神经假体中的闭环计算包括两个阶段:编码刺激到神经元信号,并将其解码为刺激。在这里,我们回顾了有关视觉计算模型的最新进展,这些模型使用尖峰来分析自然场景,包括静态图像和动态电影。我们假设为了更好地理解视网膜中的计算原理,需要对视网膜的超电路视图,其中应考虑在皮层神经元网络中揭示的不同功能网络基序。视网膜的不同构建块,包括各种细胞类型和突触连接,无论是化学突触还是电气突触(间隙连接),使视网膜成为理想的神经元网络,以适应人工智能在人工智能中开发的计算技术,用于建模编码/解码的视觉场景。总的来说,一个人需要使用尖峰的视觉计算系统方法来推动下一代视网膜神经假体作为人工视觉系统。

Neuroprosthesis, as one type of precision medicine device, is aiming for manipulating neuronal signals of the brain in a closed-loop fashion, together with receiving stimulus from the environment and controlling some part of our brain/body. In terms of vision, incoming information can be processed by the brain in millisecond interval. The retina computes visual scenes and then sends its output as neuronal spikes to the cortex for further computation. Therefore, the neuronal signal of interest for retinal neuroprosthesis is spike. Closed-loop computation in neuroprosthesis includes two stages: encoding stimulus to neuronal signal, and decoding it into stimulus. Here we review some of the recent progress about visual computation models that use spikes for analyzing natural scenes, including static images and dynamic movies. We hypothesize that for a better understanding of computational principles in the retina, one needs a hypercircuit view of the retina, in which different functional network motifs revealed in the cortex neuronal network should be taken into consideration for the retina. Different building blocks of the retina, including a diversity of cell types and synaptic connections, either chemical synapses or electrical synapses (gap junctions), make the retina an ideal neuronal network to adapt the computational techniques developed in artificial intelligence for modeling of encoding/decoding visual scenes. Altogether, one needs a systems approach of visual computation with spikes to advance the next generation of retinal neuroprosthesis as an artificial visual system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源