论文标题

抗铁磁原子双层中的栅极可调自旋波

Gate-tunable spin waves in antiferromagnetic atomic bilayers

论文作者

Zhang, Xiao-Xiao, Li, Lizhong, Weber, Daniel, Goldberger, Joshua, Mak, Kin Fai, Shan, Jie

论文摘要

二维(2D)分层磁性材料的出现为2D中的磁性研究和基于自旋应用的探索而开辟了一个令人兴奋的操场。最近在2D磁性材料中证明了显着的特性,包括磁性隧道连接中的自旋滤波和磁性状态的栅极控制。尽管这些研究集中在静态特性上,但动态磁性特性(例如激发和对自旋波的控制)仍然难以捉摸。在这里,我们通过使用超快的光泵/磁光光光探测技术来激发自旋波并在抗磁性CRI3双层中探测它们的动力学。我们在平面磁场下识别亚曲霉的磁共振,从中我们确定各向异性和层间交换场以及自旋阻尼速率。我们进一步显示了通过静电门控通过数十吉赫兹对抗铁磁共振的调节。我们的结果阐明了2D磁性材料中的磁激发和自旋动力学,并证明了它们在超快数据存储和处理中应用的独特潜力。

The emergence of two-dimensional (2D) layered magnetic materials has opened an exciting playground for both fundamental studies of magnetism in 2D and explorations of spinbased applications. Remarkable properties, including spin filtering in magnetic tunnel junctions and gate control of magnetic states, have recently been demonstrated in 2D magnetic materials. While these studies focus on the static properties, dynamic magnetic properties such as excitation and control of spin waves have remained elusive. Here we excite spin waves and probe their dynamics in antiferromagnetic CrI3 bilayers by employing an ultrafast optical pump/magneto-optical Kerr probe technique. We identify sub-terahertz magnetic resonances under an in-plane magnetic field, from which we determine the anisotropy and interlayer exchange fields and the spin damping rates. We further show tuning of antiferromagnetic resonances by tens of gigahertz through electrostatic gating. Our results shed light on magnetic excitations and spin dynamics in 2D magnetic materials, and demonstrate their unique potential for applications in ultrafast data storage and processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源