论文标题
$ su(5)\ Times \ Mathcal {t} _ {13} $纹理中的Trimaximal混合
Tribimaximal Mixing in the $SU(5) \times \mathcal{T}_{13}$ Texture
论文作者
论文摘要
我们将最近提议的$ su(5)\ times \ Mathcal {t} _ {13} $模型用于非对称纹理的模型到Up-type Quark和Seesaw扇区。分层上的上夸克质量是由涉及家庭singlet higgses,仪表仪表ligh子和矢量般的使者的高维操作员产生的。复杂的tribimaximal(TBM)Seesaw混合来自最少数量的家庭的真空结构,从而导致Yukawa和Seesaw公式的Majorana矩阵之间的对齐。介绍四个右手中微子,获得了$ m_ {ν_1} = 27.6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m_ {ν_2} = 28.9 \ \ \ \ \ \ mathrm {mev} $ and $ m_ {57.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.9 \ Mathrm {Mev} $。他们的总和几乎使普朗克的宇宙上限饱和($ 120 $ $ \ text {mev} $)。右手中微子质量是用两个参数来表达的,用于特定的家庭真空比对。我们预测$ \ require {cancel} \ CANCAL {CP} $ JARLSKOG-GREENBERG不变为$ | \ Mathcal {J} | = 0.028 $,与当前的PDG估计值一致,而Majoraana不变性$ | \ Mathcal {i} _1 | = 0.106 $和$ | \ Mathcal {i} _2 | = 0.011 $。模型参数中的标志歧义会导致不变的质量参数$ | m_ {ββ} | $:$ 13.02 $或$ 25.21 $ $ $ $ \ text {mev} $,都在最严格的上限级别($ 61 $ - $ 165 $ - $ 165 $ $ $ \ text text $ \)$ \ vext $ \ vext $ \ v}。
We extend the recently proposed $SU(5) \times \mathcal{T}_{13}$ model for the asymmetric texture to the up-type quark and seesaw sectors. The hierarchical up-type quark masses are generated from higher-dimensional operators involving family-singlet Higgses, gauge-singlet familons, and vectorlike messengers. The complex-tribimaximal (TBM) seesaw mixing arises from the vacuum structure of a minimal number of familons, resulting in an alignment between the Yukawa and Majorana matrices of the seesaw formula. Introducing four right-handed neutrinos, normal ordering of the light neutrino masses is obtained, with $m_{ν_1} = 27.6\ \mathrm{meV}$, $m_{ν_2} = 28.9\ \mathrm{meV}$ and $m_{ν_3} = 57.8\ \mathrm{meV}$. Their sum almost saturates Planck's cosmological upper bound ($120$ $\text{meV}$). The right-handed neutrino masses are expressed in terms of two parameters for a particular choice of familon vacuum alignment. We predict the $\require{cancel}\cancel{CP}$ Jarlskog-Greenberg invariant to be $|\mathcal{J}| = 0.028$, consistent with the current PDG estimate, and Majorana invariants $|\mathcal{I}_1| = 0.106$ and $|\mathcal{I}_2| = 0.011$. A sign ambiguity in the model parameters leads to two possibilities for the invariant mass parameter $|m_{ββ}|$: $13.02$ or $25.21$ $\text{meV}$, both within an order of magnitude of the most rigorous experimental upper limit ($61$--$165$ $\text{meV}$).