论文标题

Landau-Pekar方程的派生以多体均值限制

Derivation of the Landau-Pekar equations in a many-body mean-field limit

论文作者

Leopold, Nikolai, Mitrouskas, David, Seiringer, Robert

论文摘要

我们将FröhlichHamiltonian视为平均场极限,其中许多骨颗粒弱夫妇与量化的声子场。对于较大的粒子数和适当的小耦合,我们表明系统的动力学大致由Landau-Pekar方程描述。这些描述了与经典极化场相互作用的Bose-Einstein冷凝物,其动力学是由冷凝物(即,在时间演化期间粒子产生的声子的反反应)实现的。

We consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle number and suitably small coupling, we show that the dynamics of the system is approximately described by the Landau-Pekar equations. These describe a Bose-Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源