论文标题
全球抛物线异构体的空位中无质量的宇宙弦
Massless Cosmic Strings in Spacetimes with Global Parabolic Isometries
论文作者
论文摘要
引入了一类带有全球抛物线异构体(GPI)的弯曲空间。这些异构体在二维无效表面上具有固定点集,可以解释为无质量宇宙字符串的世界表。弦在这种空间中的背部反应效应可以准确地描述出世界表格中的非平凡全体性。我们证明GPI的空间是Petrov分类的$ N $几何形状。我们描述了这些空间的许多特征,包括与GPI相关的杀戮视野的特性。举例来说,我们考虑在De Sitter Universe中的无圆形无质量宇宙弦,并在以弦乐世界表格为中心的新坐标中呈现标准。
A class of curved spacetimes with global parabolic isometries (GPI) is introduced. These isometries have fixed point sets on two-dimensional null surfaces which can be interpreted as worldsheets of massless cosmic strings. Back reaction effects of the strings in such spacetimes can be described exactly, in terms of a nontrivial holonomy at the worldsheet. We show that the GPI spacetimes are type $N$ geometries of the Petrov classification. We describe a number of features of these spacetimes, including properties of Killing horizons associated to GPI. As an example, we consider a circular massless cosmic string in the de Sitter universe and present the metric in new coordinates centered at the string worldsheet.