论文标题
Sympnets:用于识别哈密顿系统的固有结构的符号网络
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
论文作者
论文摘要
我们提出了新的符号网络(Sympnets),用于基于线性,激活和梯度模块组成的数据来识别哈密顿系统。特别是,我们定义了两类的sympnet:由线性和激活模块组成的LA-SYMPNET,以及由梯度模块组成的G-Sympnet。相应地,我们证明了两个新的通用近似定理,这些定理证明了基于适当的激活函数可以近似于任意符号图。然后,我们执行几个实验,包括摆,双摆和三体问题,以研究综合体的表现性和概括能力。仿真结果表明,即使是很小的尺寸sympnets也可以很好地概括,并且能够处理可分离和不可分割的哈密顿系统,而该系统的数据点是由短或长时间步骤产生的。在所有测试用例中,Sympnets的表现都优于基线模型,并且在训练和预测方面要快得多。我们还开发了一个扩展版本的sympnets,以从不规则采样的数据中学习动态。可以将这种扩展版本的Sympnets视为代表任意哈密顿系统的解决方案的通用模型。
We propose new symplectic networks (SympNets) for identifying Hamiltonian systems from data based on a composition of linear, activation and gradient modules. In particular, we define two classes of SympNets: the LA-SympNets composed of linear and activation modules, and the G-SympNets composed of gradient modules. Correspondingly, we prove two new universal approximation theorems that demonstrate that SympNets can approximate arbitrary symplectic maps based on appropriate activation functions. We then perform several experiments including the pendulum, double pendulum and three-body problems to investigate the expressivity and the generalization ability of SympNets. The simulation results show that even very small size SympNets can generalize well, and are able to handle both separable and non-separable Hamiltonian systems with data points resulting from short or long time steps. In all the test cases, SympNets outperform the baseline models, and are much faster in training and prediction. We also develop an extended version of SympNets to learn the dynamics from irregularly sampled data. This extended version of SympNets can be thought of as a universal model representing the solution to an arbitrary Hamiltonian system.