论文标题

双变量寄生$ \ Mathsf {s} _ {\ bullet} $ - 构造

The bivariant parasimplicial $\mathsf{S}_{\bullet}$-construction

论文作者

Beckert, Falk

论文摘要

合并形态的连贯串在抽象稳定同型理论(例如代数K理论或更高的TODA括号)中以及有限维数代数的表示理论(作为A类型A类型A类型的表示)中,在各种重要结构中起重要作用。第一步,我们将证明具有强大的比较结果,将形态的可合算字符串和在立方体上的相干图与从初始对象到最终对象的路径上有支撑。 我们观察到,这两种结构都是等效的(通过传递到网格类别的更高类似物),以区分副简单2类中的特殊类型对象的相干图。此外,我们表明,在此2类中,具有区分相干图的概念很好地概括为任意形态对象。相干图的结果类别导致$ \ Mathsf {s} _ {\ bullet} $ - 构造的更高版本,并且与类型A类型的dynkin Quivers的高级Auslander代数的表示密切相关。 了解这些类别和与它们相关的函子通常需要对2类副简单组的详细分析以及抽象的立方同型理论的基本结果(因为经常被证明是Bicartesian的杰出图)。最后,我们表明,先前的比较结果扩展到了划分的划分相干图的一般类别,作为一种特殊情况,导致了较高的auslander代数之间的一些新的衍生等效性。

Coherent strings of composable morphisms play an important role in various important constructions in abstract stable homotopy theory (for example algebraic K-theory or higher Toda brackets) and in the representation theory of finite dimensional algebras (as representations of Dynkin quivers of type A). In a first step we will prove a strong comparison result relating composable strings of morphisms and coherent diagrams on cubes with support on a path from the initial to the final object. We observe that both structures are equivalent (by passing to higher analogues of mesh categories) to distinguished coherent diagrams on special classes of morphism objects in the 2-category of parasimplices. Furthermore, we show that the notion of distinguished coherent diagrams generalizes well to arbitrary morphism objects in this 2-category. The resulting categories of coherent diagrams lead to higher versions of the $\mathsf{S}_{\bullet}$-construction and are closely related to representations of higher Auslander algebras of Dynkin quivers of type A. Understanding these categories and the functors relating them in general will require a detailed analysis of the 2-category of parasimplices as well as basic results from abstract cubical homotopy theory (since subcubes of distinguished diagrams very often turn out to be bicartesian). Finally, we show that the previous comparison result extends to a duality theorem on general categories of distinguished coherent diagrams, as a special case leading to some new derived equivalences between higher Auslander algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源