论文标题

关于等级2线性系列的线性稳定性和共济稳定性

On linear stability and syzygy stability for rank 2 linear series

论文作者

Castorena, Abel, Mistretta, Ernesto C., Torres, Hugo

论文摘要

在以前的作品中,作者研究了曲线$ c $上生成的线性系列$ | V | $的线性稳定性与矢量束$ m_ {v,l}的斜率稳定性之间的关系:= \ ker(v \ otimes \ otcal \ nathcal \ Mathcal {O} {O} _c \ t)$。特别是,第二个名称的作者和L. potpino的猜想是,对于完整的线性系统$ | l | $,线性(半)稳定性相当于$ m_v $的斜率(半)稳定性,而第一个和第三名的作者证明,这种猜想的性超ellirtiriptic和通用曲线适用。 在这项工作中,我们在任何平滑的平面曲线$ 7 $上为此猜想提供了反例。

In previous works, the authors investigated the relationships between linear stability of a generated linear series $|V|$ on a curve $C$, and slope stabillity of the vector bundle $M_{V,L} := \ker (V \otimes \mathcal{O}_C \to L)$. In particular, the second named author and L. Stoppino conjecture that, for a complete linear system $|L|$, linear (semi)stability is equivalent to slope (semi)stability of $M_V$, and the first and third named authors proved that this conjecture holds for hyperelliptic and for generic curves. In this work we provide a counterexample to this conjecture on any smooth plane curve of degree $7$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源