论文标题
解决物理感知神经网络的逆PDE问题
Solving inverse-PDE problems with physics-aware neural networks
论文作者
论文摘要
我们提出了一个新型的复合框架,以在部分微分方程(PDE)的反问题背景下找到未知字段。我们将深度神经网络作为通用函数估计器的高表达性与对偏微分方程的现有数值算法的准确性和可靠性,作为语义自动编码器中的自定义层。我们的设计将计算数学,机器学习和模式识别的技术汇集在一起,以结合特定领域的知识和物理约束,以发现潜在的隐藏领域。与大多数现有的方法相比,该网络通过硬编码的PDE求解器层明确意识到了治理物理,这些方法将损失功能中的管理方程纳入或依赖于可训练的卷积层以发现数据的适当离散化。随后,将计算负载重点放在隐藏字段的发现上,因此更有效。我们称此架构将逆PDE网络(此处称为BIPDE网络)混合在一起,并证明了其适用于在一个和两个空间维度中恢复泊松问题的可变扩散系数,以及时间依赖和非线性汉堡方程的一个空间维度的扩散系数。我们还表明,这种方法对噪音是可靠的。
We propose a novel composite framework to find unknown fields in the context of inverse problems for partial differential equations (PDEs). We blend the high expressibility of deep neural networks as universal function estimators with the accuracy and reliability of existing numerical algorithms for partial differential equations as custom layers in semantic autoencoders. Our design brings together techniques of computational mathematics, machine learning and pattern recognition under one umbrella to incorporate domain-specific knowledge and physical constraints to discover the underlying hidden fields. The network is explicitly aware of the governing physics through a hard-coded PDE solver layer in contrast to most existing methods that incorporate the governing equations in the loss function or rely on trainable convolutional layers to discover proper discretizations from data. This subsequently focuses the computational load to only the discovery of the hidden fields and therefore is more data efficient. We call this architecture Blended inverse-PDE networks (hereby dubbed BiPDE networks) and demonstrate its applicability for recovering the variable diffusion coefficient in Poisson problems in one and two spatial dimensions, as well as the diffusion coefficient in the time-dependent and nonlinear Burgers' equation in one dimension. We also show that this approach is robust to noise.