论文标题
R-动力稳定茎
R-motivic stable stems
论文作者
论文摘要
我们计算一些R-动力稳定同型组。对于$ s -w \ leq 11 $,我们描述了R -Motivic Sphere Spectrum的完成的动机稳定同型组$π_{s,w} $。我们将$ρ$ -Bockstein光谱序列从C-动力EXT组获得R-动力EXT组,这些EXT基团在很大程度上被众所周知。这些EXT组是R-动力ADAMS光谱序列的输入。我们在一个范围内完全分析了Adams差异,我们还分析了隐藏的扩展名$ρ$,2和$η$。由于我们的计算,我们恢复了许多低维经典稳定同型元素的Mahowald不变性。
We compute some R-motivic stable homotopy groups. For $s - w \leq 11$, we describe the motivic stable homotopy groups $π_{s,w}$ of a completion of the R-motivic sphere spectrum. We apply the $ρ$-Bockstein spectral sequence to obtain R-motivic Ext groups from the C-motivic Ext groups, which are well-understood in a large range. These Ext groups are the input to the R-motivic Adams spectral sequence. We fully analyze the Adams differentials in a range, and we also analyze hidden extensions by $ρ$, 2, and $η$. As a consequence of our computations, we recover Mahowald invariants of many low-dimensional classical stable homotopy elements.