论文标题

从环状双重性中,所有订单和权力的开放环振幅和因果关系

Open loop amplitudes and causality to all orders and powers from the loop-tree duality

论文作者

Aguilera-Verdugo, J. Jesus, Driencourt-Mangin, Felix, Hernandez-Pinto, Roger J., Plenter, Judith, Ramirez-Uribe, Selomit, Renteria-Olivo, Andres E., Rodrigo, German, Sborlini, German F. R., Bobadilla, William J. Torres, Tracz, Szymon

论文摘要

多弹性散射幅度描述了高能散射过程下的量子波动是扰动量子场理论中的主要瓶颈。 Loop-Tree二元性是一种新颖的方法,旨在通过将环幅度振幅打开树木,并将它们与真实发射矩阵元素合并到树木中,从而克服这种瓶颈。在这封信中,我们通过使用原始的一环公式的复杂的洛伦兹 - 融合处方,将循环树二元性推广到扰动扩展中的所有订单。我们介绍了一系列具有任意内部配置的Mutiloop拓扑结构,并在Loop-Tree二元性形式主义中得出了其开放为树表示的非常紧凑且可取代的表达式。此外,这些表达式在Feynman代表中动量流的初始分配的集成级别完全独立,并且不具有非质量奇异性。这些特性,我们猜想在所有顺序上都保留其他拓扑,它提供了与其他表示相比,表现出明显的因果奇异结构和更好的数值稳定性的散射幅度表示。

Multiloop scattering amplitudes describing the quantum fluctuations at high-energy scattering processes are the main bottleneck in perturbative quantum field theory. The loop-tree duality is a novel method aimed at overcoming this bottleneck by opening the loop amplitudes into trees and combining them at integrand level with the real-emission matrix elements. In this Letter, we generalize the loop-tree duality to all orders in the perturbative expansion by using the complex Lorentz-covariant prescription of the original one-loop formulation. We introduce a series of mutiloop topologies with arbitrary internal configurations and derive very compact and factorizable expressions of their open-to-trees representation in the loop-tree duality formalism. Furthermore, these expressions are entirely independent at integrand level of the initial assignments of momentum flows in the Feynman representation and remarkably free of noncausal singularities. These properties, that we conjecture to hold to other topologies at all orders, provide integrand representations of scattering amplitudes that exhibit manifest causal singular structures and better numerical stability than in other representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源