论文标题

关于同性衍生的概念的评论

Remarks on the notion of homo-derivations

论文作者

Gselmann, Eszter, Kiss, Gergely

论文摘要

本文的目的是研究(不同的)同源性概念。这些是环$ r $的加性映射$ f $,也满足身份\ [f(xy)= f(x)y+xf(y)+f(x)f(x)f(y)\ qquad \ left(x,y \ in r \ rigr), \]或(在其他概念的情况下)方程系统\ [f(xy)= f(x)f(y)\] \ [f(xy)= f(x)y+xf(y)\ qquad \ lest(x,y \ left(x,y \ y \ in r \ right),我们的主要目标是不得调查上述方程。 f(xy)= h(x)h(y)+xk(y)+k(x)y。 \]获得的结果表明,在相当温和的假设下,即使没有添加性假设,同源性也可以完全表征。

The purpose of this paper is to study the (different) notions of homo-derivations. These are additive mappings $f$ of a ring $R$ that also fulfill the identity \[ f(xy)=f(x)y+xf(y)+f(x)f(y) \qquad \left(x, y\in R\right), \] or (in case of the other notion) the system of equations \[ f(xy)=f(x)f(y)\] \[f(xy)=f(x)y+xf(y) \qquad \left(x, y\in R\right).\] Our primary aim is to investigate the above equations without additivity as well as the following Pexiderized equation \[ f(xy)=h(x)h(y)+xk(y)+k(x)y. \] The obtained results show that under rather mild assumptions homo-derivations can be fully characterized, even without the additivity assumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源