论文标题

关于默森纳数字的数字

On digits of Mersenne numbers

论文作者

Kerr, Bryce, Mérai, László, Shparlinski, Igor E.

论文摘要

由最近发展的兴趣,以分配$ q $ - 元的数字$ m_p = 2^p-1 $,其中$ p $是Prime,我们估计使用$ m_p $,$ p \ leq x $,modulo,modulo的大量固定奇数prime $ q $。反过来,这立即意味着大约$(\ log x)^{3/2+o(1)} $ $ m_p $,$ p \ leq x $的最大数字。先前的结果暗示这仅对$(\ log x)^{1+o(1)} $最右边的数字。

Motivated by recently developed interest to the distribution of $q$-ary digits of Mersenne numbers $M_p = 2^p-1$, where $p$ is prime, we estimate rational exponential sums with $M_p$, $p \leq X$, modulo a large power of a fixed odd prime $q$. In turn this immediately implies the normality of strings of $q$-ary digits amongst about $(\log X)^{3/2+o(1)}$ rightmost digits of $M_p$, $p \leq X$. Previous results imply this only for about $(\log X)^{1+o(1)}$ rightmost digits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源