论文标题
使用(氨基甲基氨基乙基)苯乙基三甲氧基硅烷自组装膜在复杂表面上进行电子金属化的屏障/种子系统
A barrier/seed system for electroless metallization on complex surfaces using (aminomethylaminoethyl)phenethyltrimethoxysilane self-assembled films
论文作者
论文摘要
高频信号沿导体边缘传播。如果导体被电镀,则种子层至少形成一个边缘,因此必须注意确保这些层的电质量。在这项工作中,我们研究了与复杂表面兼容的基于Sam的种子层的初始质量,包括通过二维三维半导体设备包装中使用的复杂表面(TSV)。种子金属的共形和电质量非常重要。对于多功能种子层也很重要,它的能力是作为屏障层的能力,它可以保护底物免受沉积金属的高温扩散。因此,屏障层必须足够强大以承受扩散,但足够薄,可以提供允许金属种子层沉积的共形表面。诸如蒸发或溅射之类的标准屏障层沉积方法需要从源来的视线或足够大的纵横比以提供从结构内的背景气体散射以覆盖所有表面的散射。电化学和化学蒸气的沉积提供了替代方案,但担心与射频或高速数字信号的兼容性以及兼容性。我们提出了一个基于芳香的自组装单层(SAM)的屏障层,用于电气铜种子层沉积。 SAM屏障层的生存能力取决于沉积的铜种子膜的质量,该薄膜电阻率定量地判断,并通过表面粘附和形态学特性(例如裂纹和气泡)进行定性判断。描述了问题的起源和最佳方案的见解。建议使用作为光刻抗性层的扩展。我们用于TSV应用的SAM方法产生了一个“智能”种子层,可与“简单,扇形”,易于制造的“智能”种子层使用。
High frequency signals propagate along the edges of conductors. If the conductors are electroplated, then the seed layer forms at least one edge, so care must be taken to insure the electrical quality of these layers. In this work, we study the initial quality of SAM-based seed layers that are compatible with complex surfaces including through-silicon vias (TSVs), as are used in via-last three-dimensional semiconductor device packaging. The conformal and electrical quality of the seed metal is very important. Also important for a multifunction seed layer is its ability as a barrier layer, which protects the substrate from high temperature diffusion of the deposited metal. Thus, the barrier layer must be robust enough to withstand diffusion, yet thin enough to provide a conformal surface that allows metal seed layer deposition. Standard barrier layer deposition methods such as evaporation or sputtering require either a line of sight from the source or aspect ratios large enough to provide scattering from the background gas within the structure to coat all surfaces. Electrochemical and chemical vapor deposition provide alternatives, but concerns arise about contamination and compatibility with radio frequency or high-speed digital signals. We propose a barrier layer based on an aromatic self-assembled monolayer (SAM) for use in electroless copper seed layer deposition. The viability of the SAM barrier layer is determined by the quality of the deposited copper seed film, judged quantitatively by thin film resistivity and qualitatively by surface adhesion and morphological properties such as cracks and bubbles. Insights to the origins of problems and an optimal scheme are described. Extensions for use as a photolithographic resist layer are suggested. Our SAM approach for TSV applications yields a 'smart' seed layer that can be used with a 'simple,' scalloped, easy to fabricate, via hole.