论文标题
超对称杀戮结构
Supersymmetric Killing Structures
论文作者
论文摘要
在本文中,我们结合了超级几阶和超对称性的概念。我们构建了一类特殊的超人,其减少的歧管是(伪)Riemannian歧管。这些超曼群使我们能够一方面将矢量场和另一方面的纺纱场视为等效的几何对象。这是我们对{超对称杀戮结构的定义的起点}。后者结合了向量场和旋转场的子空间,只要它们满足某些场方程。这自然会导致超级对称代数扩展到非平板减小空间的情况。我们详细研究了进入此结构的其他术语,并给出了许多示例。
In this text we combine the notions of supergeometry and supersymmetry. We construct a special class of supermanifolds whose reduced manifolds are (pseudo) Riemannian manifolds. These supermanifolds allow us to treat vector fields on the one hand and spinor fields on the other hand as equivalent geometric objects. This is the starting point of our definition of {supersymmetric Killing structures}. The latter combines subspaces of vector fields and spinor fields, provided they fulfill certain field equations. This naturally leads to a superalgebra that extends the supersymmetry algebra to the case of non-flat reduced space. We examine in detail the additional terms that enter into this structure and we give a lot of examples.