论文标题
单分子断裂连接数据中无监督的特征识别
Unsupervised feature recognition in single molecule break junction data
论文作者
论文摘要
单分子断裂连接测量值可提供大量电导与\电极分离轨迹。沿着这样的测量值,目标分子可以与不同几何形状的电极结合,并且单分子连接的演化和破裂也可能遵循不同的轨迹。各种典型痕迹类的解开是对数据进行适当物理解释的先决条件。在这里,我们利用神经网络的有效特征识别属性自动找到相关的跟踪类。为了消除对手动标记的训练数据的需求,我们应用了一种组合方法,该方法会根据主成分预测的极端值或一些辅助测量的数量自动选择训练迹线,然后该网络捕获这些特征性迹线的特征,并将其推广到整个数据集。简单的神经网络结构的使用也可以直接了解决策机制。我们证明,这种合并的机器学习方法在对低和室温的无观念但高度相关的痕量类别的无监督识别中是有效的。
Single-molecule break junction measurements deliver a huge number of conductance vs.\ electrode separation traces. Along such measurements the target molecules may bind to the electrodes in different geometries, and the evolution and rupture of the single-molecule junction may also follow distinct trajectories. The unraveling of the various typical trace classes is a prerequisite of the proper physical interpretation of the data. Here we exploit the efficient feature recognition properties of neural networks to automatically find the relevant trace classes. To eliminate the need for manually labeled training data we apply a combined method, which automatically selects training traces according to the extreme values of principal component projections or some auxiliary measured quantities, and then the network captures the features of these characteristic traces, and generalizes its inference to the entire dataset. The use of a simple neural network structure also enables a direct insight to the decision making mechanism. We demonstrate that this combined machine learning method is efficient in the unsupervised recognition of unobvious, but highly relevant trace classes within low and room temperature gold-4,4' bipyridine-gold single molecule break junction data.