论文标题

通过考虑场景对称性,从单个普通视野图像中生成球形图像

Spherical Image Generation from a Single Normal Field of View Image by Considering Scene Symmetry

论文作者

Hara, Takayuki, Harada, Tatsuya

论文摘要

在各个方向拍摄的球形图像(360度)允许代表主题和空间本身的周围环境,为观众提供了沉浸式体验。从单个正常视野(NFOV)图像中生成球形图像很方便,并且大大扩展了用法方案,因为无需使用特定的全景相机或从多个方向拍摄图像;但是,这仍然是一个具有挑战性且未解决的问题。主要的挑战是控制产生广泛区域的高度自由度,其中包括所需的合理球形图像的所有方向。另一方面,场景对称性是球形图像的全局结构的基本特性,例如旋转对称性,平面对称性和不对称性。我们提出了一种从单个NFOV图像生成球形图像的方法,并使用场景对称性控制生成区域的自由度。我们将场景对称参数作为潜在变量融合到条件变异自动编码器中,然后我们了解NFOV图像和场景对称性的球形图像的条件概率。此外,使用神经网络表示概率密度函数,并使用隐藏变量的圆形移动和翻转实现场景对称性。我们的实验表明,所提出的方法可以生成各种合理的球形图像,这些图像从对称到不对称。

Spherical images taken in all directions (360 degrees) allow representing the surroundings of the subject and the space itself, providing an immersive experience to the viewers. Generating a spherical image from a single normal-field-of-view (NFOV) image is convenient and considerably expands the usage scenarios because there is no need to use a specific panoramic camera or take images from multiple directions; however, it is still a challenging and unsolved problem. The primary challenge is controlling the high degree of freedom involved in generating a wide area that includes the all directions of the desired plausible spherical image. On the other hand, scene symmetry is a basic property of the global structure of the spherical images, such as rotation symmetry, plane symmetry and asymmetry. We propose a method to generate spherical image from a single NFOV image, and control the degree of freedom of the generated regions using scene symmetry. We incorporate scene-symmetry parameters as latent variables into conditional variational autoencoders, following which we learn the conditional probability of spherical images for NFOV images and scene symmetry. Furthermore, the probability density functions are represented using neural networks, and scene symmetry is implemented using both circular shift and flip of the hidden variables. Our experiments show that the proposed method can generate various plausible spherical images, controlled from symmetric to asymmetric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源