论文标题

在混乱系统中学习隐藏状态:物理信息的回声状态网络方法

Learning Hidden States in a Chaotic System: A Physics-Informed Echo State Network Approach

论文作者

Doan, Nguyen Anh Khoa, Polifke, Wolfgang, Magri, Luca

论文摘要

我们扩展了物理信息的回声状态网络(PI-ESN)框架,以重建混乱系统中未测量状态(隐藏状态)的演变。通过使用(i)数据对PI-ESN进行训练,该数据不包含有关未测量状态的信息,以及(ii)原型混沌动力学系统的物理方程。考虑了非噪声和嘈杂的数据集。首先,证明PI-ESN可以准确地重建未衡量的状态。其次,对嘈杂数据的重建表明重建是可靠的,这意味着PI-ESN充当了DeNoiser。本文为利用物理知识与机器学习之间的协同作用开辟了新的可能性,以增强混乱的动力学系统中未满足状态的重建和预测。

We extend the Physics-Informed Echo State Network (PI-ESN) framework to reconstruct the evolution of an unmeasured state (hidden state) in a chaotic system. The PI-ESN is trained by using (i) data, which contains no information on the unmeasured state, and (ii) the physical equations of a prototypical chaotic dynamical system. Non-noisy and noisy datasets are considered. First, it is shown that the PI-ESN can accurately reconstruct the unmeasured state. Second, the reconstruction is shown to be robust with respect to noisy data, which means that the PI-ESN acts as a denoiser. This paper opens up new possibilities for leveraging the synergy between physical knowledge and machine learning to enhance the reconstruction and prediction of unmeasured states in chaotic dynamical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源