论文标题

多个受试者FMRI数据一致性的监督过度对齐

Supervised Hyperalignment for multi-subject fMRI data alignment

论文作者

Yousefnezhad, Muhammad, Selvitella, Alessandro, Han, Liangxiu, Zhang, Daoqiang

论文摘要

超对准已广泛用于多变量模式(MVP)分析,以基于多主体功能磁共振成像(FMRI)数据集发现人的大脑中的认知状态。大多数现有的HA方法都使用了无监督的方法,在这些方法中,它们仅在时间序列中具有相同位置的体素之间的相关性最大化。但是,这些无监督的解决方案可能不是在监督的MVP问题中处理功能对齐的最佳选择。本文提出了一种有监督的超对准方法(SHA)方法,以确保MVP分析的更好的功能一致性,其中提出的方法提供了一个有监督的共享空间,可以最大程度地提高属于同一类别的刺激之间的相关性,并最大程度地减少不同类别的刺激类别之间的相关性。此外,SHA采用了广义优化解决方案,该解决方案生成共享空间并计算单个迭代中的映射功能,因此对于大型数据集,具有最佳的时间和空间复杂性。多主体数据集的实验表明,SHA方法在最先进的HA算法上,多级问题的性能提高了19%。

Hyperalignment has been widely employed in Multivariate Pattern (MVP) analysis to discover the cognitive states in the human brains based on multi-subject functional Magnetic Resonance Imaging (fMRI) datasets. Most of the existing HA methods utilized unsupervised approaches, where they only maximized the correlation between the voxels with the same position in the time series. However, these unsupervised solutions may not be optimum for handling the functional alignment in the supervised MVP problems. This paper proposes a Supervised Hyperalignment (SHA) method to ensure better functional alignment for MVP analysis, where the proposed method provides a supervised shared space that can maximize the correlation among the stimuli belonging to the same category and minimize the correlation between distinct categories of stimuli. Further, SHA employs a generalized optimization solution, which generates the shared space and calculates the mapped features in a single iteration, hence with optimum time and space complexities for large datasets. Experiments on multi-subject datasets demonstrate that SHA method achieves up to 19% better performance for multi-class problems over the state-of-the-art HA algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源