论文标题
通过多尺度分析增强动态模式分解
Enhancing Dynamic-Mode Decomposition via Multi-Scale Analysis
论文作者
论文摘要
通过使用基于小波的BESOV规范,我们计算给定数据集的非平凡多尺度非线性特征,以增强标准的动态模式分解算法。因此,我们能够构建复杂的可观察物,从而增强算法性能,而不会给用户带来不当的计算负担。
Through the use of wavelet based Besov norms, we compute nontrivial multiscale nonlinear features of a given data set so as to enhance the standard Dynamic-Mode Decomposition algorithm. Thus we are able to build sophisticated observables which enhance algorithm performance without placing undue computational burdens on the user.