论文标题
LEGA-C调查中的Z〜0.8的恒星运动学和环境:首先在过度密集的环境中建造庞大的,慢旋转器
Stellar Kinematics and Environment at z~0.8 in the LEGA-C Survey: Massive, Slow-Rotators are Built First in Overdense Environments
论文作者
论文摘要
在这封信中,我们研究了环境对中间红移的大型,静态星系样本的综合和空间分辨的恒星运动学的影响($ 0.6 <z <1.0 $)。为了进行此分析,我们结合了来自cosmos场和环境测量的大型星体天体物理学(LEGA-C)调查的大型早期Galaxy Astrophysics人口普查(LEGA-C)调查的光度和光谱参数。我们在静态星系的旋转支持上分析了密度过高(1+$δ$)的趋势,并在固定质量或固定恒星速度分散剂处没有通用趋势。这与以前对当地宇宙的研究一致。大型星系的旋转支持主要取决于恒星质量。我们重点介绍了两个大型星系($ \ log M_ \ star/m_ \ odot \ geq11 $),它们偏离了平均质量关系。首先,在最密集的区域($(1+δ)\ leq1 $)中最大的星系表现出较高的旋转支撑。同样,在最高的质量($ \ log M_ \ star/m_ \ odot \ geq11.25 $)旋转支撑的范围在除最密集的区域以外的所有地方都很重要。这对应于越来越多的慢速旋转器分数,使得在最密集的环境中($(1+δ)\ geq3.5 $)主要是(90 $ \ pm $ 10 \%)缓慢旋转器。这种效果在固定的速度分散量中没有看到较小的驾驶机制,这是在固定速度上的较小区域:最大的繁殖机制,是较小的水平,并且最大程度地播放了通讯水平,并且是最大的繁殖量。减少旋转而不会显着影响中央恒星速度分散。在本地宇宙中,大多数庞大的星系是缓慢的旋转器,无论环境如何,都表明,除了最密集的环境以外,在后来的宇宙时间$(z \ lyssim0.6)$中发生了轻微合并。
In this letter, we investigate the impact of environment on integrated and spatially-resolved stellar kinematics of a sample of massive, quiescent galaxies at intermediate redshift ($0.6<z<1.0$). For this analysis, we combine photometric and spectroscopic parameters from the UltraVISTA and Large Early Galaxy Astrophysics Census (LEGA-C) surveys in the COSMOS field and environmental measurements. We analyze the trends with overdensity (1+$δ$) on the rotational support of quiescent galaxies and find no universal trends at either fixed mass or fixed stellar velocity dispersion. This is consistent with previous studies of the local Universe; rotational support of massive galaxies depends primarily on stellar mass. We highlight two populations of massive galaxies ($\log M_\star/M_\odot\geq11$) that deviate from the average mass relation. First, the most massive galaxies in the most under-dense regions ($(1+δ)\leq1$) exhibit elevated rotational support. Similarly, at the highest masses ($\log M_\star/M_\odot\geq11.25$) the range in rotational support is significant in all but the densest regions. This corresponds to an increasing slow-rotator fraction such that only galaxies in the densest environments ($(1+δ)\geq3.5$) are primarily (90$\pm$10\%) slow-rotators.This effect is not seen at fixed velocity dispersion, suggesting minor merging as the driving mechanism: only in the densest regions have the most massive galaxies experienced significant minor merging, building stellar mass and diminishing rotation without significantly affecting the central stellar velocity dispersion. In the local Universe, most massive galaxies are slow-rotators, regardless of environment, suggesting minor merging occurs at later cosmic times $(z\lesssim0.6)$ in all but the most dense environments.