论文标题
域适应的量子子空间对齐
Quantum subspace alignment for domain adaptation
论文作者
论文摘要
域自适应(DA)用于自适应获得具有给定相关但标记的数据集不同的未加工数据集的标签。代表性DA算法的子空间对齐(SA)试图找到线性转换以使两个不同数据集的子空间对齐。在对齐标记的数据集上训练的分类器可以转移到未标记的数据集中以预测目标标签。在本文中,提出了两种量子版本,以在量子设备上实施DA程序。一种方法是量子空间比对算法(QSA),可以在给定样品的数量和维度中实现二次加速。另一种方法,即可以通过变分混合量子量子经验在近任量子设备上实现的变异量子子空间比对算法(VQSA)。在不同类型数据集上的数值实验的结果表明,与相应的经典算法相比,VQSA可以实现竞争性能。
Domain adaptation (DA) is used for adaptively obtaining labels of an unprocessed data set with a given related, but different labelled data set. Subspace alignment (SA), a representative DA algorithm, attempts to find a linear transformation to align the subspaces of the two different data sets. The classifier trained on the aligned labelled data set can be transferred to the unlabelled data set to predict the target labels. In this paper, two quantum versions of the SA are proposed to implement the DA procedure on quantum devices. One method, the quantum subspace alignment algorithm (QSA), achieves quadratic speedup in the number and dimension of given samples. The other method, the variational quantum subspace alignment algorithm (VQSA), can be implemented on the near term quantum devices through a variational hybrid quantum-classical procedure. The results of the numerical experiments on different types of datasets demonstrate that the VQSA can achieve competitive performance compared with the corresponding classical algorithm.