论文标题

使用深度学习的有限角度层析成像用于传输X射线显微镜

Limited Angle Tomography for Transmission X-Ray Microscopy Using Deep Learning

论文作者

Huang, Yixing, Wang, Shengxiang, Guan, Yong, Maier, Andreas

论文摘要

在传输X射线显微镜(TXM)系统中,扫描样品的旋转可能仅限于有限的角度范围,以避免在某些倾斜角处与其他系统零件发生碰撞或高衰减。由于缺少数据而导致的有限角度数据的图像重建受伪影的侵害。在这项工作中,深度学习首次应用于有限的TXM中角度重建。在获得足够的实际数据进行培训的挑战下,研究了培训来自合成数据的深神经网络。特别是,U-NET是生物医学成像中最新的神经网络,是根据合成椭圆形数据和多类别数据训练的,以减少过滤后的反射(FBP)重建图像中的伪像。对合成数据和实际扫描的小球藻数据进行评估,以$ 100^\ circ $有限的角度层析成像进行评估。对于合成测试数据,U-NET将FBP重建中的U-NET从$ 2.55 \ times 10^{ - 3} $μm$ $^{ - 1} $从$ 2.55 \ times 10^{ - 3} $降低到$ 1.21指数从0.625到0.920。通过对测量预测的惩罚加权最少的正方形降级,RMSE和SSIM将进一步提高到$ 1.16 \ times 10^{ - 3} $μm$ $ $^{ - 1} $和0.932。对于实际测试数据,提出的方法显着改善了小球藻细胞中亚细胞结构的3-D可视化,这表明其在生物学,纳米科学和材料科学中的纳米级成像的重要值。

In transmission X-ray microscopy (TXM) systems, the rotation of a scanned sample might be restricted to a limited angular range to avoid collision to other system parts or high attenuation at certain tilting angles. Image reconstruction from such limited angle data suffers from artifacts due to missing data. In this work, deep learning is applied to limited angle reconstruction in TXMs for the first time. With the challenge to obtain sufficient real data for training, training a deep neural network from synthetic data is investigated. Particularly, the U-Net, the state-of-the-art neural network in biomedical imaging, is trained from synthetic ellipsoid data and multi-category data to reduce artifacts in filtered back-projection (FBP) reconstruction images. The proposed method is evaluated on synthetic data and real scanned chlorella data in $100^\circ$ limited angle tomography. For synthetic test data, the U-Net significantly reduces root-mean-square error (RMSE) from $2.55 \times 10^{-3}$ μm$^{-1}$ in the FBP reconstruction to $1.21 \times 10^{-3}$ μm$^{-1}$ in the U-Net reconstruction, and also improves structural similarity (SSIM) index from 0.625 to 0.920. With penalized weighted least square denoising of measured projections, the RMSE and SSIM are further improved to $1.16 \times 10^{-3}$ μm$^{-1}$ and 0.932, respectively. For real test data, the proposed method remarkably improves the 3-D visualization of the subcellular structures in the chlorella cell, which indicates its important value for nano-scale imaging in biology, nanoscience and materials science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源