论文标题
完全真正的平坦最小表面
Totally Real Flat Minimal Surface in Hyperquadric
论文作者
论文摘要
在本文中,我们研究了在复杂的高质量$ q_ {n-2} $中完全最小的表面的几何形状,并获得了这些最小沉浸液产生的谐波序列的一些特征。对于$ q_ {n-2} $和$ \ mathbb {c} p^{n-1} $的完全真正的平面表面,我们确定它们的$ n = 4、5、6 $,并在它们为clifford解决方案时给出分类定理。
In this paper, we study geometry of totally real minimal surfaces in the complex hyperquadric $Q_{N-2}$, and obtain some characterizations of the harmonic sequence generated by these minimal immersions. For totally real flat surfaces that are minimal in both $Q_{N-2}$ and $\mathbb{C}P^{N-1}$, we determine them for $N=4, 5, 6$, and give a classification theorem when they are Clifford solutions.