论文标题

基于驱动歧管上的分析捆绑结构

Analytic bundle structure on the idempotent manifold

论文作者

Leung, Chi-Wai, Ng, Chi-Keung

论文摘要

令$ x $为(真实或复杂的)Banach空间,而$ \ Mathcal {i}(x)$是所有(非零和非身份)IDEMPOTENTS的集合;即,在$ x $上的有限线性运算符,其正方形等于自己。我们表明,$ \ Mathcal {i}(x)$的Banach Submanifold $ \ Mathcal {l}(x)$是一个本地微不足道的分析仿射式捆绑包,这是通过发送$ q $ q in $ q in $ q in $ q in的Grassmann歧管$ \ MATHSCR {g}(x)$每只光纤上的仿生式空间结构是从$ \ Mathcal {l}(x)$引起的(尤其是,每个光纤都是$ \ Mathcal {l}(x)$)的仿射式子空间。 使用此信息,我们表明,如果$ k $是真正的希尔伯特空间,则分配$$(e,t)\ mapsto t^*\ circ p_ {e^\ bot} + p_ {e},\ quad \ text {where} e \ where} \ Mathcal {l}(e,e^\ bot),$$从切线捆绑包的总空间中诱导双分析培养,$ \ mathbf {t}(\ Mathscr {g}(k}(k)(k)(k)$,$ \ mathscr {g}(k)$ \ e $ et $ \ e \ e}($ e}($ e}(k)$}(k)(k) $ e $,$ p_e \ in \ mathcal {l}(k)$的正交补充是对$ e $的正交投影,而$ t^*$是$ t $的伴奏)。请注意,此双分析培训是每个切线平面上的仿射图。

Let $X$ be a (real or complex) Banach space, and $\mathcal{I}(X)$ be the set of all (non-zero and non-identity) idempotents; i.e., bounded linear operators on $X$ whose squares equal themselves. We show that the Banach submanifold $\mathcal{I}(X)$ of $\mathcal{L}(X)$ is a locally trivial analytic affine-Banach bundle over the Grassmann manifold $\mathscr{G}(X)$, via the map $κ$ that sends $Q\in \mathcal{I}(X)$ to $Q(X)$, such that the affine-Banach space structure on each fiber is the one induced from $\mathcal{L}(X)$ (in particular, every fiber is an affine-Banach subspace of $\mathcal{L}(X)$). Using this, we show that if $K$ is a real Hilbert space, then the assignment $$(E,T)\mapsto T^*\circ P_{E^\bot} + P_{E}, \quad \text{ where } E\in \mathscr{G}(K)\text{ and } T\in \mathcal{L}(E,E^\bot),$$ induces a bi-analytic bijection from the total space of the tangent bundle, $\mathbf{T}(\mathscr{G}(K))$, of $\mathscr{G}(K)$ onto $\mathcal{I}(K)$ (here, $E^\bot$ is the orthogonal complement of $E$, $P_E\in \mathcal{L}(K)$ is the orthogonal projection onto $E$, and $T^*$ is the adjoint of $T$). Notice that this bi-analytic bijection is an affine map on each tangent plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源