论文标题

矢量自回归模型具有空间序列的空间结构系数在空间网格上

Vector Autoregressive Models with Spatially Structured Coefficients for Time Series on a Spatial Grid

论文作者

Yan, Yuan, Huang, Hsin-Cheng, Genton, Marc G.

论文摘要

我们为空间网格上的时间序列数据提出了一个简约的时空模型。我们的模型能够处理可在数百个位置收集并捕获空间非平稳性的高维度序列数据。从本质上讲,我们的模型是一种矢量自回旋模型,它利用空间结构在两个级别上实现自回旋矩阵的简约。第一级确保使用滞后 - 邻居方案确保自回旋矩阵的稀疏性。第二级进行非零自回归系数的空间聚类,以使附近的位置具有相似的系数。该模型是可解释的,可用于识别地理子区域,在每个区域中,时间序列与同质自回旋系数共享相似的动力学行为。使用自适应融合套索罚款的惩罚最大可能性获得模型参数。估计过程易于实现,可以根据建模者的需求来量身定制。我们在仿真研究中说明了提出的估计算法的性能。我们将模型应用于从沙特阿拉伯的气候模型生成的风速时间序列数据集,以说明其有用性。还讨论了我们方法的局限性和可能的​​扩展。

We propose a parsimonious spatiotemporal model for time series data on a spatial grid. Our model is capable of dealing with high-dimensional time series data that may be collected at hundreds of locations and capturing the spatial non-stationarity. In essence, our model is a vector autoregressive model that utilizes the spatial structure to achieve parsimony of autoregressive matrices at two levels. The first level ensures the sparsity of the autoregressive matrices using a lagged-neighborhood scheme. The second level performs a spatial clustering of the non-zero autoregressive coefficients such that nearby locations share similar coefficients. This model is interpretable and can be used to identify geographical subregions, within each of which, the time series share similar dynamical behavior with homogeneous autoregressive coefficients. The model parameters are obtained using the penalized maximum likelihood with an adaptive fused Lasso penalty. The estimation procedure is easy to implement and can be tailored to the need of a modeler. We illustrate the performance of the proposed estimation algorithm in a simulation study. We apply our model to a wind speed time series dataset generated from a climate model over Saudi Arabia to illustrate its usefulness. Limitations and possible extensions of our method are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源