论文标题

随机局部相互作用模型:无关的地统计学

Stochastic Local Interaction Model: Geostatistics without Kriging

论文作者

Hristopulos, Dionissios T., Pavlides, Andreas, Agou, Vasiliki D., Gkafa, Panagiota

论文摘要

如果经典的地统计方法面对大量空间分布数据,则面临严重的计算挑战。我们为可以处理大数据的计算有效空间预测提供了简化的随机局部相互作用(SLI)模型。 SLI方法构建了一个空间交互矩阵(精度矩阵),该矩阵解释了数据值,它们的位置和无需用户输入的采样密度变化。我们表明,这种精度矩阵严格确定。对于参数估计,空间预测和不确定性估计,SLI方法不需要矩阵倒置,导致计算程序在计算上的强度明显少于Kriging。精度矩阵涉及紧凑的内核函数(球形,二次等),可实现稀疏矩阵方法的应用,从而提高计算时间和内存需求。我们通过数据集研究了提出的SLI方法,其中包括大约11500个来自坎贝尔县(美国怀俄明州)的煤炭厚度的钻孔数据。我们还使用交叉验证分析和计算时间将SLI与普通的Kriging(OK)进行比较。根据所使用的验证措施,SLI在估算接缝厚度方面的性能略高于交叉验证测度方面。就计算时间而言,对于相同的网格大小,SLI预测比OK快3至25倍(取决于Kriging邻域的大小)。

Classical geostatistical methods face serious computational challenges if they are confronted with large sets of spatially distributed data. We present a simplified stochastic local interaction (SLI) model for computationally efficient spatial prediction that can handle large data. The SLI method constructs a spatial interaction matrix (precision matrix) that accounts for the data values, their locations, and the sampling density variations without user input. We show that this precision matrix is strictly positive definite. The SLI approach does not require matrix inversion for parameter estimation, spatial prediction, and uncertainty estimation, leading to computational procedures that are significantly less intensive computationally than kriging. The precision matrix involves compact kernel functions (spherical, quadratic, etc.) which enable the application of sparse matrix methods, thus improving computational time and memory requirements. We investigate the proposed SLI method with a data set that includes approximately 11500 drill-hole data of coal thickness from Campbell County (Wyoming, USA). We also compare SLI with ordinary kriging (OK) in terms of estimation performance, using cross validation analysis, and computational time. According to the validation measures used, SLI performs slightly better in estimating seam thickness than OK in terms of cross-validation measures. In terms of computation time, SLI prediction is 3 to 25 times (depending on the size of the kriging neighborhood) faster than OK for the same grid size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源