论文标题

螺旋波嵌合体,用于偶联的振荡器与惯性

Spiral wave chimeras for coupled oscillators with inertia

论文作者

Maistrenko, Volodymyr, Sudakov, Oleksandr, Maistrenko, Yuri

论文摘要

我们报告偶联相旋转器中螺旋波嵌合体状态的外观和变形。首先,当耦合强度足够小时,系统行为类似于经典的二维(2D)库拉莫托 - 毛毛螺旋嵌合体具有不一致的核心的钟形频率特征。随着耦合的增加,核心获得了恒定时间平均频率的同心区域,嵌合体变为准二体。最终,随后耦合强度增加,只剩下一个这样的区域,即整个核心变为频率交联。当参数点进入所谓的单独}区域时,会发生系统行为的基本修改。然后,孤立的振荡器通常存在于嵌合体状态的螺旋芯背景上。这些孤独的振荡器不参与核心周围的常见螺旋。取而代之的是,它们开始以不同的时间平均频率(庞加莱绕组数字)进行振荡。孤立振荡器的数量和处置可以是任何初始条件给出的。耦合的进一步增加,螺旋形消失了,系统行为转变为一种时空混乱。

We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called solitary} region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源