论文标题

在几何RSK对应下的聚合物分区功能的不变性

Invariance of polymer partition functions under the geometric RSK correspondence

论文作者

Corwin, Ivan

论文摘要

我们证明,涉及多个非交流路径的离散定向聚合物分区函数的值在通过其在几何RSK对应的情况下代替其图像的情况下仍然不变。该结果的灵感来自于最新的,Orthmann和Virág证明的近期和显着的身份,该身份被回收为我们主要结果的零温度,半分化限制。

We prove that the values of discrete directed polymer partition functions involving multiple non-intersecting paths remain invariant under replacing the background weights by their images under the geometric RSK correspondence. This result is inspired by a recent and remarkable identity proved by Dauvergne, Orthmann and Virág which is recovered as the zero-temperature, semi-discrete limit of our main result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源