论文标题

$ v $ - adic多重Zeta值的完整性

Integrality of $v$-adic multiple zeta values

论文作者

Chen, Yen-Tsung

论文摘要

在本文中,我们证明了$ v $ -ADIC多重Zeta值(MZVS)的完整性。对于任何索引$ \ Mathfrak {s} \ in \ Mathbb {n}^r $和有限的位置$ v \ in a:= = \ Mathbb {f} _q [θ] $,Chang和Mishiba介绍了$ V $ -V $ -ADIC MZVS $ QUIND的概念Furusho的$ P $ -ADIC MZVS。通过估计$ v $ -ADIC估值的$ζ_A(\ Mathfrak {s})_ V $,我们表明$ζ_A(\ Mathfrak {s})_ V $是几乎所有$ v $的$ V $ -ADIC INTEGER。该结果可以看作是$ p $ -ADIC MZVS完整性的功能字段类似物,Akagi-Hirose-Yasuda和Chatzistamatiou证明了这一点。

In this article, we prove the integrality of $v$-adic multiple zeta values (MZVs). For any index $\mathfrak{s}\in\mathbb{N}^r$ and finite place $v\in A:=\mathbb{F}_q[θ]$, Chang and Mishiba introduced the notion of the $v$-adic MZVs $ζ_A(\mathfrak{s})_v$, which is a function field analogue of Furusho's $p$-adic MZVs. By estimating the $v$-adic valuation of $ζ_A(\mathfrak{s})_v$, we show that $ζ_A(\mathfrak{s})_v$ is a $v$-adic integer for almost all $v$. This result can be viewed as a function field analogue of the integrality of $p$-adic MZVs, which was proved by Akagi-Hirose-Yasuda and Chatzistamatiou.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源