论文标题

在路径出版中保护边缘隐私与不同的隐私

Protect Edge Privacy in Path Publishing with Differential Privacy

论文作者

Lu, Zhigang, Shen, Hong

论文摘要

给定网络中的路径是许多现实世界应用中的一般时间序列链的一般形式,例如轨迹和互联网流。私有轨迹发布问题发布路径信息可用于真正的用户,但可以保护对手以最大的背景知识重建路径。退出的研究都认为,这一知识是路径上的一个顶点。为了防止对手恢复丢失的信息,他们发布了一个干扰路径,其中每个顶点都是从具有差分隐私(DP)的预定义集合中采样的,以替换原始路径中的相应顶点。在本文中,我们放松了这一假设,除了路径上的一个边缘,因此考虑了更强大的对手的场景,具有整个网络拓扑的最大背景知识,而路径(包括所有(包括任意)缺失的边缘)的路径(包括所有顶点)。在这样的假设下,现有工作产生的扰动路径很脆弱,因为对手可以从扰动路径中的边缘存在中重建缺失边缘。为了解决此漏洞并有效地保护边缘隐私,我们没有发布一种基于图形的路径出版的新型方案,通过将路径嵌入图形中,该路径嵌入了包含伪边缘的路径和应用差异隐私技术的图形中,只有合法用户才能恢复过较高的网络拓扑并恢复过多的Vertices。我们从理论上分析了算法在差异隐私,实用性和执行效率方面的性能。我们还对高性能集群系统进行了广泛的实验评估,以验证我们的分析结果。

Paths in a given network are a generalised form of time-serial chains in many real-world applications, such as trajectories and Internet flows. Differentially private trajectory publishing concerns publishing path information that is usable to the genuine users yet secure against adversaries to reconstruct the path with maximum background knowledge. The exiting studies all assume this knowledge to be all but one vertex on the path. To prevent the adversaries recovering the missing information, they publish a perturbed path where each vertex is sampled from a pre-defined set with differential privacy (DP) to replace the corresponding vertex in the original path. In this paper, we relax this assumption to be all but one edge on the path, and hence consider the scenario of more powerful adversaries with the maximum background knowledge of the entire network topology and the path (including all the vertices) except one (arbitrary) missing edge. Under such an assumption, the perturbed path produced by the existing work is vulnerable, because the adversary can reconstruct the missing edge from the existence of an edge in the perturbed path. To address this vulnerability and effectively protect edge privacy, instead of publishing a perturbed path, we propose a novel scheme of graph-based path publishing to protect the original path by embedding the path in a graph that contains fake edges and replicated vertices applying the differential privacy technique, such that only the legitimate users who have the full knowledge of the network topology are able to recover the exact vertices and edges of the original path with high probability. We theoretically analyse the performance of our algorithm in differential privacy, utility, and execution efficiency. We also conduct extensive experimental evaluations on a high-performance cluster system to validate our analytical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源